X^2+301x+6242.25=0

Simple and best practice solution for X^2+301x+6242.25=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X^2+301x+6242.25=0 equation:



X^2+301X+6242.25=0
a = 1; b = 301; c = +6242.25;
Δ = b2-4ac
Δ = 3012-4·1·6242.25
Δ = 65632
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{65632}=\sqrt{16*4102}=\sqrt{16}*\sqrt{4102}=4\sqrt{4102}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(301)-4\sqrt{4102}}{2*1}=\frac{-301-4\sqrt{4102}}{2} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(301)+4\sqrt{4102}}{2*1}=\frac{-301+4\sqrt{4102}}{2} $

See similar equations:

| 4x²+26=126 | | 225x^2-x-5=0 | | 6x2+19x+12=0 | | 22=12h+4h−5h | | 5(1.2z+6)=3(0.5z+4) | | 3600=(500+x)+(3x)+(x) | | 4(8-2-x)=2(7-x) | | -8x-7x-7=6x-10-4x | | -5x-120=3x+16 | | 6(-2x+16)=-10x-80 | | 2(-2x+16)=-6x-80 | | x+3/10=5/10 | | 3|4-4x|=30 | | -4x+24=-2x+4 | | -10x+7x+3=-7x-7-9x | | 4^w=256 | | 8x+120=2x+30 | | 20+4r=32+2r | | 4c+16=18 | | 2y-21=3 | | -6x-10-2x=2x+3x-2 | | 3x+105=-4x-35 | | 1/2(3x-2)=5 | | 6t+2=16 | | 5(-3x+2)=25 | | 14n+24=66 | | 2a+3a=-15 | | t-13=78 | | 15+3e=-6 | | y=1+0.01y^2 | | 15+-3e=-6 | | 3a/4a=7 |

Equations solver categories